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We discuss the quantum-classical correspondence(QCC) in a specific dissipative chaotic system, the Duf-
fing oscillator. The quantum version of the Duffing oscillator is treated as an open quantum system and
analyzed numerically by the use of quantum state diffusion(QSD). We consider a pseudo-Lyapunov exponent
and investigate it in detail, varying the Planck constant effectively. We show that there exists a critical stage in
which the crossover from classical to quantum behavior occurs. Furthermore, we find that a dissipation effect
suppresses the occurrence of chaos in the quantum region, while it, combined with the periodic external force,
plays a crucial role in the chaotic behavior of the classical system.
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Quantum-classical correspondence(QCC) is a fundamen-
tal problem in quantum mechanics. In particular, when the
classical system is a chaotic one, this correspondence is still
unclear; quantum dynamics(the Schrödinger equation) and
the mathematical structure of quantum states(a separable
Hilbert space) generally exclude the probability of chaotic
phenomena[1]. Nevertheless, various studies have been
done in Hamiltonian systems and are very fruitful[2]. How-
ever, chaotic behavior can occur in dissipative systems for
which a definite Hamiltonian does not exist[3]. Furthermore,
dissipative quantum chaos is also related to the foundation of
quantum mechanics[4].

In this Rapid Communication, we discuss the QCC for a
quantum version of the Duffing oscillator. The classical
equation of the Duffing oscillator ismẍ+2gmẋ+mv0

2x3/ l2

−mv0
2x=mv0

2lg cossvtd, where the scale parameterl charac-
terizes a size of the system. If we choose a set of
dimensionless parameters sG ,g,Vd;sg /v0,g,v /v0d
=s0.125,0.3,1.00d, we find chaotic motion in the Poincaré
surface[5]. We treat the Duffing oscillator as an open quan-
tum system and assume that its time evolution is described
by Markovian dynamics. We assume that the system’s re-
duced density matrixr evolves according to the Lindblad
master equation[6],

ṙ = −
i

"
fĤ,rg + L̂rL̂† −

1

2
L̂†L̂r −

1

2
rL̂†L̂. s1d

We guess the HamiltonianĤ sĤ†=Ĥd and L̂ in Eq. (1) phe-
nomenologically, and analyze this system numerically by the
use of quantum state diffusion(QSD) [7], a stochastic
Schrödinger equation. QSD is a very effective method of
numerical simulation for a system with many degrees of
freedom or for a nonlinear dynamical system, since it is nec-

essary for solving these problems to prepare many bases for
representing the density matrix. We use the algorithm of the
QSD given in Ref.[8]. Analyses using QSD of other dissi-
pative systems are given in Refs.[9,10].

The quantum versions of the Duffing oscillator and simi-
lar systems have been studied by many authors. Their results
support the emergence of chaotic behavior in the classical
limit. Brun et al. [11] showed that a strange attractor occurs
on the Poincaré surface. Bhattacharyaet al. [12] showed that
their result of a Lyapunov exponent is a positive value. These
results are very interesting and important. However, such
results are inadequate for discussing QCC because it is im-
portant to investigate what phenomena occur between the
classical region and the quantum region. Therefore, we pro-
pose a method with which to discuss QCC in more detail.
Let us introduce a scaling parameterb. This parameter is
square of the ratio of Planck constant" to the value of char-
acteristic actionS0=ml2v0 of the present system:b2=" /S0.
Similar parameters are introduced in Refs.[9,11]. We define
the region ofb,0 (not equal to zero) as classical and the
region ofb=1.00 as quantum. We investigate the system as
b goes from 0 to 1 with fixedS0. To investigate the differ-
ence in temporal behavior for two different initial conditions
we calculate the following quantity:

Dstd =
1

N
o
h1,2j

hdQ̄12std2 + dP̄12std2j1/2, s2d

where dQ̄12std=TrhQ̂r1stdj−TrhQ̂r2stdj and dP̄12std
=TrhP̂r1stdj−TrhP̂r2stdj. We define the dimensionless posi-

tion operator, momentum operator, and time asQ̂= x̂/ l, P̂
= p̂/mlv0, andt=v0t, respectively. The canonical commuta-
tion relation for the position operatorx̂ and the momentum
operatorp̂ is fx̂, p̂g= i". Two density matricesr1std andr2std
evolve from different initial states,r1s0d and r2s0d, respec-
tively. Hereafter, we assume thatris0d si =1,2d is a pure

coherent state uailkaiu, where ai =Î2fTrhQ̂ris0dj
+ i TrhP̂ris0djg. The summation in Eq.(2) is over the sets of
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the chosen initial conditions, andN is the number of those
sets. We calculateDstd, varying b while keepingS0 fixed.
The calculation ofDstd is similar to the derivation of the
Lyapunov exponent in the classical mechanics. We call the
resultant value gained from the simulation as the pseudo-
Lyapunov-exponent. We show the existence of a clear cross-
over from classical to quantum behavior asb→1. Moreover,
we find that the effect of dissipation in the system suppresses
the emergence of chaos.

Let us explain the model for the quantum version of the

Duffing oscillator. The HamiltonianĤ and L̂ in Eq. (1) are
determined in order that the equations of expectation values

for Q̂ and P̂ are equivalent to the classical equation of mo-
tion, neglecting the moments higher than second order,

Ĥ = ĤD + ĤR + Ĥex, s3d

L̂ = ÎGsQ̂ + iP̂d, s4d

where ĤD= P̂2/2+b2Q̂4/4−Q̂2/2, ĤR=GsQ̂P̂+ P̂Q̂d /2, Ĥex

=−gQ̂cossVtd /b, and fQ̂, P̂g= i. The dimensionless param-
eters G, g, and V are the same as those of the classical
equation of motion fsG ,g,Vd=s0.125,0.3,1.00dg. Notice
that b is introduced naturally when the operators are trans-
formed to dimensionless expressions. The first term and the

remainder inĤD represent the kinetic term and the double-
well potential term, respectively. The second term in Eq.(3),
ĤR, represents the strength renormalization for the coupling
of interaction between system and environment. We can re-
move this term from Eq.(3) by making the transformation

Q̂→Q̂ and P̂→ P̂−GQ̂. The third term in Eq.(3), Ĥex, rep-
resents the potential term corresponding to the periodic ex-
ternal force. Generally, the generator of Eq.(1) is indepen-
dent of the time. We determine it simply so as to reproduce
the external force in the equation of expectation values. The
definition of b implies that the value ofl, which character-
izes a size of the system, forb1 is larger than one forb2 if
b1,b2. The value of the potential around the origin be-
comes larger asb goes to zero. Before numerical simulations
can begin, we have to determine a suitable value ofe
;Dst=0d. Notice that two points in the phase space are not
distinguishablefrom the view of quantum mechanics, if they
coexist inside the same Planck cell. The size of the Planck
cell is determined by the Heisenberg’s uncertainty relation.

In this model, the commutation relationfQ̂, P̂g=fx̂, p̂g /S0

= ib2 is fulfilled. Then, the Planck cell has a constant volume
of DQDP=b2/2 in the scaled phase space, whereas it has
DxDp=" /2=b2S0/2 in the original phase space. With the
fixed value of typical actionS0 for the system, the smallerb2

corresponds to the smaller"; the system exhibits more clas-
sical behavior. We define an effective Planck cell as a region

in the (TrsQ̂rd ,TrsP̂rd) plane whose length isb in units of
ÎS0/2. Then, we investigate two choices fore: (1) e=0.01
(fixed), where two points in the phase space aredistinguish-
ableonly for the classical regionsb=0.01d; (2) e,b, where
the points aredistinguishablefor all bs. As a first step of our
simulation, we produced results similar to those of Ref.[11]

for the constant phase maps and verified the existence of the
strange attractor. We have randomly chosen initial states, us-
ing the data calculated for constant phase maps. Each initial
coherent state chosen gives an initial value of the action.
However, the present case is a dissipative system under a
periodic external force. Therefore, the initial condition does
not affect our results.

We show the results of simulatingDstd with e fixed as
0.01. In Fig. 1(a), we find an exponential increase ofDstd, a
characteristic behavior of chaos. This corresponds to the fact
that the maximal Lyapunov exponent is positive in classical
chaotic systems. This behavior is also consistent with the
existence of the strange attractor in Ref.[11], and verifies
that the quantum version of the Duffing oscillator maintains
chaotic behavior forb=0.01. In Fig. 1, we see very different
behavior between(b) and (c)–(d). For theseb values, each
pair of initial points is within the same Planck cell and is
indistinguishablefrom each other. However, the value of
Dstd for b=0.10 increases gradually, and crosses the size of
the effective Planck cell after some duration. This suggests
that a remnant of chaotic dynamics still survives forb
=0.10. We find that this behavior continues more or less up
to b=0.40 through more detailed numerical results. On the
other hand, the values ofDstd for both b=0.40 and 1.00 are
always less than the size of effective Planck cell; the chaotic
dynamics has been completely lost. This observation sug-
gests that the crossover from classical to quantum behavior
exists aroundb,0.40. In the above argument, we have to

note the pointssTrhQ̂rj ,TrhP̂rjd in the constant phase map
for eachb are distributed in a bounded domain, which forces
the value ofDstd for everyb to reach a saturation value for
a long-time duration. We estimate the maximum value of the
distance between two points in the bounded domain, which
is written by L, by our constant phase map data:sb , ln Ld

FIG. 1. The time evolution ofDstd with e fixed as 0.01. The
quantities plotted are dimensionless by definition. The complex
Wiener process is used in the QSD.(a) and(b) are obtained with a
single realization of the complex Wiener process for each initial
condition(20 samples). (c)–(d) are obtained by averaging over 100
realizations of the complex Wiener process for each initial condi-
tion (10 samples). (a)–(d) are for b=0.01, 0.10, 0.40, and 1.00,
respectively.
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=s0.01,5.62d, (0.10, 3.32), (0.40, 1.90), and(1.00, 0.59). The
logarithmic value of the saturation forb=0.01, for example,
is estimated at about 5 through the simulation up tot=60;
this is almost equal to 0.8 lnL. This type of saturation due to
the bounded domain is different from the results in Figs. 1(c)
and 1(d). Therefore, the comparison of the value ofDstd
with the size of the effective Planck cell is sufficient to cal-
culate up tot=30.

Let us show the results fore,b, where the initial two
points are separated by the effective Planck cell size. We
computeDstd for b=0.10, 0.40, 0.60, 1.00, 1.50, and 2.00.
The behavior ofDstd for b=0.10 [Fig. 2(a)] is an exponen-
tially increasing one, which is similar to the result in Fig.
1(b). In Figs. 2(b)–2(f), we find that, except for a very short
period after the starting time, the value ofDstd for eachb
decreases for some duration and tends to approach a certain
constant valueDasymp asymptotically, which is indicated by
the dashed lines. Let us writet0 for when the value ofDstd
becomes smaller than the size of the effective Planck cell.
Hereafter, we use these values to characterize the result in
Figs. 2(b)–2(f). Thus, these observations again allow us to
consider that there is a crossover from classical to quantum
behavior aroundb,0.40. These results suggest that the
quantum version of the Duffing oscillator lies in the classical
region for b=0.01 and 0.10, in the quantum region forb

=1.00, and in the crossover from classical to quantum behav-
ior aroundb,0.40. Furthermore, let us call the case ofb
.1.00 the deep quantum region.

We investigate the results forbù0.40 ande,b in detail.
By the use of the results in Figs. 2(b)–2(f), the values oft0
and Dasymp are estimated as follows:sb ,t0,Dasympd
=s0.40,5.71,−3.75d, s0.60,2.88,−8.30d, s1.00,1.45,−21.0d,
s1.50,1.04,−20.0d, and s2.00,0.91,−25.4d. When a density
matrix is represented by the coherent stateual, its diagonal
elements are real valued functions of the complexa plane. In
this sense we regardDstd as the distance between the centers
of r1std and r2std on the complexa plane. On the other
hand, the distribution ofristd si =1,2d itself spreads gener-
ally wider than the region given by the minimal uncertainty
state. For a time longer thant0, the values ofDstd for b
.0.40 are less than the size of the effective Planck cell, as
indicated by each dotted line in Figs. 2(b)–2(f). Through
such consideration, we suppose that the value ofDstd is less
than the spread ofristd; the difference betweenr1std and
r2std is not so large. Therefore, we approximateDstd by the
quantity characterizing the spread coming from a singlerstd
after t0. We assume that this is expressed by a quantityS
introduced in Ref.[7],

Dstd < E
V

dqdpmsq,pdSsq,p,td, s5d

whereq, p are characteristic parameters of initial pure coher-
ent statefa=Î2sq+ ipdg, msq,pd is the distribution function
of the initial conditions, andV is the region of integration;
the size ofV is L. The spread is given by

S2 ; Mhssâ†,âdj ; Mhkâ†âl − kâ†lkâlj, s6d

where â=sQ̂+ iP̂d /Î2, the symbolkÔl is the expectation

value of an operatorÔ for a stochastic state vector used in
the formulation of the QSD[7], and the symbolM represents
the mean over the ensemble of stochastic processes in the
QSD. Meanwhile, the observation ofDstd in Figs. 2(b)–2(f)
suggests that eachDstd simply decreases until it reaches
Dasymp. Percival[7] showed that the diffusion due to Lind-
blad operators dominates for the shorter time, whereas the

drift due to Ĥ dominates for the longer time. Here, we as-

sume simply that the effect ofĤ is negligible until Dstd
reachDasymp. We get approximately an inequality involving
S2sq,p,td and]S2/]tsq,p,td using the QSD equation. Per-
forming the integral with respect to the dimensionless time
from t0 to t in both sides of it, we obtain an inequality for
Ssq,p,td. Substitute it into Eq.(5) and assuming thatmsq,pd
is a uniform distribution function andSsq,p,t=t0d=es,bd,
the upper bound forDstd is obtained as follows:

Dst − t0d & FS1 +
1

b2De2Gst−t0d − 1G−1/2

. s7d

Let us denote the time whenDstd has reachedDasymp as
tasymp. Curves calculated by the right-hand side of Eq.(7),
Dstd, are represented by broken dotted lines in Fig. 2. In this
figure, we find that in the case ofbù1, Eq. (7) is a good

FIG. 2. The time evolution ofDstd with e=b. The quantities
plotted are dimensionless by definition. The complex Wiener pro-
cess is used in the QSD. The asymptotic value ofDstd, Dasymp, is
indicated by the dotted line. The right-hand side of Eq.(7), Dstd, is
expressed by the broken dotted line. Figure(a) is obtained with a
single realization of the complex Wiener process for each initial
condition (20 samples). Figures(b)–(f) are obtained by averaging
over 100 realizations of the complex Wiener process for each initial
condition (10 samples). Figures (a)–(e), and (f) are for b=0.10,
0.40, 0.60, 1.00, 1.50, and 2.00, respectively.
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approximation of the upper bound for anyt betweent0 and
tasymp. This is not appropriate forb=0.40 and 0.60, since the
verification of Eq.(5) is subtle in such cases. The value of
Dstd keeps a constant valueDasymp, once it reaches this
value. This constant value is probably related to the time

evolution of system due toĤ, but we do not know an ana-
lytical method to determine its value. In the classical me-
chanics, a dissipative chaotic system generates chaotic dy-
namics due to the coexistence of the dissipative effect and
periodic external force. In the quantum version of the Duff-
ing oscillator, we draw the following conclusion: IfS0 is
much greater than", the system is similar to the classical one
and the existence of dissipation is very important for occur-
rence of chaotic dynamics. On the other hand, ifS0 is smaller
than " (i.e., in the quantum and deep quantum cases), the
above analysis suggests that the effect of dissipation sup-
presses even the occurrence of chaotic behavior.

In the present work, we find the crossover from classical
to quantum behavior in the quantum version of the Duffing
oscillator through the analysis ofDstd. This method is ex-
pected to be an effective one for investigating QCC in dissi-
pative chaotic systems.
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