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We discuss the quantum-classical correspondé@¢C) in a specific dissipative chaotic system, the Duf-
fing oscillator. The quantum version of the Duffing oscillator is treated as an open quantum system and
analyzed numerically by the use of quantum state diffus@8D). We consider a pseudo-Lyapunov exponent
and investigate it in detail, varying the Planck constant effectively. We show that there exists a critical stage in
which the crossover from classical to quantum behavior occurs. Furthermore, we find that a dissipation effect
suppresses the occurrence of chaos in the quantum region, while it, combined with the periodic external force,
plays a crucial role in the chaotic behavior of the classical system.
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Quantum-classical corresponderf€@¥CC) is a fundamen- essary for solving these problems to prepare many bases for
tal problem in quantum mechanics. In particular, when theepresenting the density matrix. We use the algorithm of the
classical system is a chaotic one, this correspondence is st@dSD given in Ref[8]. Analyses using QSD of other dissi-
unclear; quantum dynamigshe Schrodinger equatiprand  pative systems are given in Ref9,10].
the mathematical structure of quantum statesseparable The quantum versions of the Duffing oscillator and simi-
Hilbert spacg generally exclude the probability of chaotic lar systems have been studied by many authors. Their results
phenomena[l]. Nevertheless, various studies have beersupport the emergence of chaotic behavior in the classical
done in Hamiltonian systems and are very fruitfg. How-  limit. Brun et al. [11] showed that a strange attractor occurs
ever, chaotic behavior can occur in dissipative systems foon the Poincaré surface. Bhattachaeyal. [12] showed that
which a definite Hamiltonian does not exj8i. Furthermore, their result of a Lyapunov exponent is a positive value. These
dissipative quantum chaos is also related to the foundation oksults are very interesting and important. However, such
quantum mechanicigt]. results are inadequate for discussing QCC because it is im-

In this Rapid Communication, we discuss the QCC for aportant to investigate what phenomena occur between the
quantum version of the Duffing oscillator. The classicalclassical region and the quantum region. Therefore, we pro-
equation of the Duffing oscillator isnk+2ymx+ mng3ll2 pose a method with which to discuss QCC in more detail.
—mw§x=mwglg coqwt), where the scale parametecharac- Let us introduce a scaling paramet@r This parameter is
terizes a size of the system. If we choose a set ofquare of the ratio of Planck consténto the value of char-
dimensionless  parameters (I',g,Q)=(y/wy,9,0/wy)  acteristic actior§=ml’w, of the present systeng®=#/S,.
=(0.125,0.3,1.00 we find chaotic motion in the Poincaré Similar parameters are introduced in Re®.11]. We define
surface[5]. We treat the Duffing oscillator as an open quan-the region of3~0 (not equal to zerpas classical and the
tum system and assume that its time evolution is describetegion of 3=1.00 as quantum. We investigate the system as
by Markovian dynamics. We assume that the system’s ref goes from 0 to 1 with fixed. To investigate the differ-
duced density matriyp evolves according to the Lindblad €nce in temporal behavior for two different initial conditions

master equatioi6], we calculate the following quantity:
1 — —
b e Lo 1o A(r) = = 2 {8Qun) + P, (2)
p:—%[H,p]+LpLJr—ELTLp—EpLTL. (1) Nig 12

where Q1) =Tr{Qpy(N}-THQpx(n} and  SPy(7)

We guess the Hamiltoniad (H'=H) andL in Eq. (1) phe- = A ) . . .
nomenologically, and analyze this system numerically by the_Tr{Ppl(T)} Tr{Pp()}. We define the dimensionless posi-

use of quantum state diffusionQSD) [7], a stochastic tion operator, momentum operator, and timeQsX/I, P
Schrédinger equation. QSD is a very effective method off P/Mlwy, and7=wgt, respectively. The canonical commuta-
numerical simulation for a system with many degrees oftion relation for the position operatérand the momentum
freedom or for a nonlinear dynamical system, since it is necoperatorp is [X, p]=i%. Two density matricep;(7) andp,(7)
evolve from different initial stateg;(0) and p,(0), respec-

tively. Hereafter, we assume thaf(0) (i=1,2) is a pure

*Electronic address: ota@suou.waseda.jp coherent  state lai)as|,  where  a;=v2[Tr{Qp;(0)}
"Electronic address: ohba@waseda.jp +i Tr{Pp;(0)}]. The summation in Eq2) is over the sets of
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the chosen initial conditions, and is the number of those 4 | Effectivé Planck cell -—-- g Effective Planck cell -— - -
sets. We calculaté(7), varying 8 while keepingS, fixed. 5 1
The calculation ofA(7) is similar to the derivation of the < | < ‘1)
Lyapunov exponent in the classical mechanics. We call the” » =2
resultant value gained from the simulation as the pseudo: . j
Lyapunov-exponent. We show the existence of a clear cross  te=s===c=csococ-caood 5
over from classical to quantum behavior/as- 1. Moreover, 0 5 0 f’ 2025 %0 b) 0 5 0 15 20 25 %0
we find that the effect of dissipation in the system suppresse:
the emergence of chaos. O MEffectve Planck call === ! [ Effective Planck cell ——--

Let us explain the model for the quantum version of the ' [ /i aami ?
Duffing oscillator. The Hamiltoniaid andL in Eq. (1) are z N T 2
determined in order that the equations of expectation values ™ -3
for Q and P are equivalent to the classical equation of mo- ’4 “
tion, neglecting the moments higher than second order, ®0 5 10 15 20 25 20 ©0 5 10 15 20 25 20

(c) T (d) T
H:HD+HR+Hex1 (3)
FIG. 1. The time evolution ofA(7) with € fixed as 0.01. The
N = PN quantities plotted are dimensionless by definition. The complex
L=\T(Q+iP), (4) Wiener process is used in the QS@) and(b) are obtained with a

2 o - ~ " AL AR "~ single realization of the complex Wiener process for each initial
WherAe HD_P2/2+ﬁ2Q4/A4jQ2/2’ HR=T'(QP+PQ)/2, Hex cor?dition(ZO samplep (c)<d) gre obtained kr))y averaging over 100
=-gQcogOt)/B, and[Q,P]=i. The dimensionless param- realizations of the complex Wiener process for each initial condi-
etersI’, g, and Q) are the same as those of the classicaltion (10 samples (a)~«d) are for 3=0.01, 0.10, 0.40, and 1.00,
equation of motion[(I',g,)=(0.125,0.3,1.00. Notice respectively.
that B is introduced naturally when the operators are trans-

formed to dimensionless expressions. The first term and théor the constant phase maps and verified the existence of the

remainder inI:|D represent the kinetic term and the double-Strange attractor. We have randomly chosen initial states, us-

well potential term, respectively. The second term in @y, "9 the data calculated for constant phase maps. Each initial
~ coherent state chosen gives an initial value of the action.

HR.’ represents the strength renormalizgtion for the COUpIing-lowever, the present case is a dissipative system under a
of Interaction between system and environment. We can ref>eriodic external force. Therefore, the initial condition does
move this tAermAfromA Eq(3) by making the transjormatlon not affect our results.

Q—Q andP— P-I'Q. The third term in Eq(3), He, rep- We show the results of simulatingg(7) with e fixed as
resents the potential term corresponding to t_he_ periodic €X9.01. In Fig. 1a), we find an exponential increase &f7), a
ternal force. Generally, the generator of Ef) is indepen-  characteristic behavior of chaos. This corresponds to the fact
dent of the time. We determine it simply so as to reproducghat the maximal Lyapunov exponent is positive in classical
the external force in the equation of expectation values. Thenaotic systems. This behavior is also consistent with the
definition of 8 implies that the value of, which character-  existence of the strange attractor in REFL], and verifies
izes a size of the system, fgh is larger than one foB, if  that the quantum version of the Duffing oscillator maintains
B1<B,. The value of the potential around the origin be- chaotic behavior fog=0.01. In Fig. 1, we see very different
comes Iqrger ag goes to zero. Before numgrical simulations pehavior betweertb) and (c)—(d). For theses values, each
can begin, we have to determine a suitable valueeof paijr of initial points is within the same Planck cell and is
=A(7=0). Notice that two points in the phase space are nofgistinguishablefrom each other. However, the value of
distinguishablefrom the view of quantum mechanics, if they A(7) for 8=0.10 increases gradually, and crosses the size of
coexist inside the same Planck cell. The size of the Plancie effective Planck cell after some duration. This suggests
cell is determined by the Heisenberg's uncertainty relationthat a remnant of chaotic dynamics still survives fer

In this model, the commutation relatio@,P]=[X,p]/S;  =0.10. We find that this behavior continues more or less up
=ip3? is fulfilled. Then, the Planck cell has a constant volumeto 8=0.40 through more detailed numerical results. On the
of AQAP=p2/2 in the scaled phase space, whereas it hasther hand, the values df(7) for both 3=0.40 and 1.00 are
AxAp=%/2=8°S)/2 in the original phase space. With the always less than the size of effective Planck cell; the chaotic
fixed value of typical actiorg, for the system, the smallg®®  dynamics has been completely lost. This observation sug-
corresponds to the smallér the system exhibits more clas- gests that the crossover from classical to quantum behavior
sical behavior. We define an effective Planck cell as a regioexists around3~0.40. In the above argument, we have to
in the (Tr(Qp), Tr(Pp)) plane whose length ig in units of  note the pointTr{Qp}, T{Pp}) in the constant phase map
VS/2. Then, we investigate two choices fer (1) e=0.01  for eachpB are distributed in a bounded domain, which forces
(fixed), where two points in the phase space diinguish-  the value ofA(7) for every 8 to reach a saturation value for
ableonly for the classical regiof3=0.01); (2) e~ B, where  a long-time duration. We estimate the maximum value of the
the points aralistinguishabldor all 8s. As a first step of our distance between two points in the bounded domain, which
simulation, we produced results similar to those of R&t] is written by L, by our constant phase map da(g,InL)
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3 | Effective Planck cell ———- 0.5 fEffective Planck cell -~ - =1.00, and in the crossover from classical to quantum behav-
2 or. ior around 8~ 0.40. Furthermore, let us call the case pf
g ! s 05 >1.00 the deep quantum region.
- ? T We investigate the results f@=0.40 ande~ B in detalil.
5 15 By the use of the results in Figs(®—2(f), the values ofr,
2

2 e and Azqymp are estimated as follows:(8, 7,Azsymg
) . =(0.40,5.71,-3.7p (0.60,2.88,-8.30 (1.00,1.45,-21.09
(1.50,1.04,-20.0 and(2.00,0.91,-254 When a density
matrix is represented by the coherent statg its diagonal
elements are real valued functions of the compigdane. In
this sense we regatl(7) as the distance between the centers
of p;(7) and p,(7) on the complexa plane. On the other
hand, the distribution op;(7) (i=1,2) itself spreads gener-
ally wider than the region given by the minimal uncertainty
state. For a time longer tham, the values ofA(7) for B
>0.40 are less than the size of the effective Planck cell, as
indicated by each dotted line in Figs(b2-2(f). Through
such consideration, we suppose that the valua(aj is less
than the spread of;(7); the difference betweep;(7) and
po(7) is not so large. Therefore, we approximater) by the

= - ; quantity characterizing the spread coming from a sipgte
0 5 10 15 20 25 30 0 5 10 15 20 256 30 .. .
© . 0 . after ;. We assume that this is expressed by a quarity
introduced in Ref[7],

Effective Planck cell ----
0 InA asymp Ut
In Ig

InA

25 s ]
0 5 10 15 20 25 30
(c) T

Effective Planck cell ----

InA

FIG. 2. The time evolution ofA(7) with e=B. The quantities
plotted are dimensionless by definition. The complex Wiener pro- -
cess is used in the QSD. The asymptotic value\of), Agymp is A Jvdqdpu(q,p)z(q,p, g ®)
indicated by the dotted line. The right-hand side of &g, D(7), is
expressed by the broken dotted line. Figtais obtained with a  Whereq, p are characteristic parameters of initial pure coher-
single realization of the complex Wiener process for each initialent statd a=v2(q+ip)], u(q,p) is the distribution function
condition (20 samplep Figures(b)~(f) are obtained by averaging of the initial conditions, and/ is the region of integration;
over 100 realizations of the complex Wiener process for each initiathe size ofV is L. The spread is given by
condition (10 samples Figures(a)<e), and (f) are for =0.10, 5 At Avy ata .
0.40, 0.60, 1.00, 1.50, and 2.00, respectively. 37=M{o(@',a)} = M{(@'a) - @K@}, (6)

=(0.01,5.62, (0.10, 3.32, (0.40, 1.90, and(1.00, 0.59. The ~ Where &=(Q+iP)/y2, the symbol(O) is the expectation

logarithmic value of the saturation f@=0.01, for example, value of an operatoD for a stochastic state vector used in

is estimated at about 5 through the simulation upr+®0; the formulation of the QSIP7], and the symboM represents

this is almost equal to 0.8 In. This type of saturation due to the mean over the ensemble of stochastic processes in the

the bounded domain is different from the results in Figs) 1 QSD. Meanwhile, the observation &f 7) in Figs. Zb)-2(f)

and Xd). Therefore, the comparison of the value &fr)  suggests that each(r) simply decreases until it reaches

with the size of the effective Planck cell is sufficient to cal- A,q/m, Percival[7] showed that the diffusion due to Lind-

culate up tor=30. blad operators dominates for the shorter time, whereas the
Let us show the results fog~ 3, where the initial tWo gyift due toH dominates for the longer time. Here, we as-

points are separated by the effective Planck cell size. We

computeA () for 4=0.10, 0.40, 0.60, 1.00, 1.50, and 2.00 sSume simply that the effect ol is negligible until A(7)

) Doy EeT e TR e T " “reachA We get approximately an inequality involvin
The behavior ofA(7) for 8=0.10[Fig. 2(@)] is an exponen- 32(q,p ars)yrgpndaEZg/ar(qp% ? usingythe ng equ)::\tion PeE
tially increasing one, which is similar to the result in Fig. . N )

1(b). In Figs. 2b)-2f), we find that, except for a very short forming the integral with respect to the dimensionless time

period after the starting time, the value &f7) for each 3 fzrom 7o to 7 in both sides of it, we obtain an inequality for

decreases for some duration and tends to approach a certangq’p’.T)' Subrsﬂt_ute !t Into Eq_(5) and assung tr_lax(q, P
; I IS a uniform distribution function and(q,p, 7=m)=€(~ ),

constant valuel,s,m, asymptotically, which is indicated by h bound foA(7) is obtained as foll X

the dashed lines. Let us writg for when the value of\(7) e upper bound foA(7) is obtained as follows:

becomes smaller than the size of the effective Planck cell. 1\ orgemn -1z

Hereafter, we use these values to characterize the result in Alr—m = | |1 +E flmn -1 : ()

Figs. 2b)—2(f). Thus, these observations again allow us to

consider that there is a crossover from classical to quanturket us denote the time whea(7) has reached\ o m, as

behavior around8~0.40. These results suggest that ther,sm, Curves calculated by the right-hand side of Ed),

guantum version of the Duffing oscillator lies in the classicalD(7), are represented by broken dotted lines in Fig. 2. In this

region for 3=0.01 and 0.10, in the quantum region f6r figure, we find that in the case @f=1, Eq.(7) is a good
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approximation of the upper bound for ambetweenr, and In the present work, we find the crossover from classical
Tasymp TIS is not appropriate fg8=0.40 and 0.60, since the to quantum behavior in the quantum version of the Duffing
verification of Eq.(5) is subtle in such cases. The value. of oscillator through the analysis @f(7). This method is ex-
A(7) keeps a constant valulas,m, once it reaches this pected to be an effective one for investigating QCC in dissi-
value. This constant valug is probably related to the tim&yative chaotic systems.

evolution of system due tél, but we do not know an ana- _
lytical method to determine its value. In the classical me- The authors thank T. Brun and R. Schack for offering us
chanics, a dissipative chaotic system generates chaotic d{e algorithm of QSD used in this work. The authors also
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periodic external force. In the quantum version of the Duff-fruitful discussions. Y.O. thanks T. P. Spiller for useful com-
ing oscillator, we draw the following conclusion: & is  ments. This work is supported partially by the Grant-in-Aid
much greater thaf, the system is similar to the classical one for COE Research and that for Priority Area(Bo. 763,
and the existence of dissipation is very important for occurMEXT. The authors thank the Yukawa Institute for Theoret-
rence of chaotic dynamics. On the other han&,ifs smaller  ical Physics at Kyoto University. Discussions during the
than# (i.e., in the quantum and deep quantum casttee  YITP workshop YITP-W-02-13 on “Quantum Chaos: Present
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